Exploratory factor analysis

Self-test answers

e  What is the equation of a straight line?

Yl-=b0+b1Xi+£i

e Using what you learnt in Chapter 6, or Section 17.6.2, calculate the correlation
matrix for the factor scores. Compare this to the correlations of the factors in
Output 17.10.

cor(pc5$scores)

TC1 TC4 TC3 TC2
TC1 1.0000000 0.44299574 0.3620630 -0.18336649
TC4 0.4429957 1.00000000 0.3098527 -0.09732931
TC3 0.3620630 0.30985272 1.0000000 -0.16573305
TC2 -0.1833665 -0.09732931 -0.1657331 1.00000000

This matrix is the same as the correlation between factors in the model output:

With factor correlations of

TC1 TC4 TC3 TC2
TCl1 1.00 0.44 0.36 -0.18
TC4 0.44 1.00 0.31 -0.10
TC3 0.36 0.31 1.00 -0.17
TC2 -0.18 -0.10 -0.17 1.00

The only difference is the number of decimal places displayed, which we could rectify if we wanted to
by using the round() function and executing:

round(cor(pc5$scores), 2)

o

;c;“"t«g’ e Can you think of another way of obtaining the structure matrix (the correlations
2‘? between factors and items) now you’ve learned about factor scores?

The values in the structure matrix are the correlations between the factor scores, and the responses
to each item. For example, let’s correlate the factor scores (pc5Sscores) with the variable Q01 from
the ragData dataframe (ragDataSQ01). We can do this by executing:

cor(pc5$scores, ragData$Q01)
Let’s use round() to round the results to 2 decimal places (note we have just put the command above
into the round() function and specified 2 as the number of decimal places):

round(cor(pc5$scores, ragData$Q0l),2)

The result is:

[,1]
TCl 0.40
TC4 0.50
TC3 0.53
TC2 0.01

These correspond to the values in the structure matrix in the book chapter. To make things a little
clearer, let’s do the same for items 6 and 18 in the questionnaire (which are the top two lines in the
structure matrix in the chapter).

round(cor(pc5$scores, ragData$Q06),2)

[,1]
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TCl1 0.78
TC4 0.29
TC3 0.10
TC2 -0.14

round(cor(pc5$scores, ragData$Ql8),2)

[,1]

TCl1 0.76
TC4 0.36
TC3 0.42
TC2 -0.15

Again, these correlations are the values in the structure matrix, which shows that the structure matrix
is made up of the correlations between the factor scores and the items in the analysis/questionnaire.

Oliver Twisted

Please Sir, can | have some more ... matrix algebra?

2 Calculation of factor score coefficients

B=R'A
476 —-7.46 391 -235 242 -049Y 087 0.01
'~-;;91‘“ -746 1849 -1242 545 -554 122| 0.96 -0.03

391 -1242 10.07 -3.65 379 -096| 092 0.04
-2.35 545 -365 297 -216 0.02| 0.00 0.82
242 554 3.79 -216 298 -0.56|-010 0.75
-0.49 1.22 -096 0.02 -056 1.27) 0.09 0.70

Column 1 of matrix B

To get the first element of the first column of matrix B, you need to multiply each element in the first
column of matrix A with the correspondingly placed element in the first row of matrix R. Add these
six products together to get the final value of the first element. To get the second element of the first
column of matrix B, you need to multiply each element in the first column of matrix A with the
correspondingly placed element in the second row of matrix R™. Add these six products together to
get the final value ... and so on:

PROFESSOR ANDY P FIELD



B,, = (4.75924 x 0.87407 ) + (~7.46190 x 0.95768) + (3.90949 x 0.92138)
+(=2.35093 x —0.00237 ) + (2.42104 x —0.09575) + (— 0.48607 x 0.096)
=0.343

B,, = (~7.4619x0.87407)+ (18.48556 x 0.95768) + (— 12.41679 x 0.92138)
+(5.445 x -0.00237 ) + (— 5.54427 x —0.09575) + (1.22155 x 0.096)
=0.376

B,; =(3.90949 x 0.87407 ) + (- 12.41679 x 0.95768) + (10.07382 x 0.92138)
+(—3.64853 x —0.00237) + (3.78869 x —0.09575) + (— 0.95731 x 0.096)
=0.362

B,, = (~2.35093 x 0.87407 ) + (5.445 x 0.95768) + (~ 3.64853 x 0.92138)
+(2.96922 x —0.00237 ) + (— 2.16094 x —0.09575) + (0.02255 x 0.096 )
=0.000

B,s =(2.42104 x 0.87407 ) + (- 5.54427 x 0.95768 ) + (3.78869 x 0.92138)
+ (= 2.16094 x —0.00237 ) + (2.97983 x —0.09575) + (- 0.56017 x 0.096 )
=-0.037

B,, = (—0.48607 x 0.87407) + (1.22155 x 0.95768) + (— 0.95731 x 0.92138)
+(0.02255 x —0.00237) + (= 0.56017 x —0.09575) + (1.27072 x 0.096 )

=0.039

Column 2 of matrix B

To get the first element of the second column of matrix B, you need to multiply each element in the
second column of matrix A with the correspondingly placed element in the first row of matrix R~'. Add
these six products together to get the final value. To get the second element of the second column of
matrix B, you need to multiply each element in the second column of matrix A with the
correspondingly placed element in the second row of matrix R~'. Add these six products together to
get the final value ... and so on:
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B, = (4.75924 x 0.00842 )+ (~7.46190 x —0.03653 )+ (3.90949 x 0.03178)
+(~2.35093 x 0.81556 )+ (2.42104 x 0.75435 )+ (~ 0.48607 x 0.69936)
=0.006

By, = (~7.4619x0.00842 )+ (18.48556 x —0.03653 )+ (- 12.41679 x 0.03178)
+(5.445%0.81556 )+ (~ 5.54427 x 0.75435)+ (1.22155 x 0.69936)
=-0.020

B,, = (3.90949 x 0.00842 )+ (— 12.41679 x —0.03653)+ (10.07382 x 0.03178)
+ (= 3.64853 x 0.81556 )+ (3.78869 x 0.75435 )+ (~ 0.95731 x 0.69936)
=0.020

B,, = (- 2.35093 x 0.00842 )+ (5.445 x —0.03653)+ (— 3.64853 x 0.03178)
+(2.96922 x 0.81556 )+ (— 2.16094 x 0.75435 )+ (0.02255 x 0.69936)
=0.473

B,, = (2.42104 x 0.00842)+ (- 5.54427 x —0.03653)-+ (3.78869 x 0.03178)
+ (= 2.16094 x 0.81556 )+ (2.97983 x 0.75435 )+ (- 0.56017 x 0.69936 )
=0.437

B, = (- 0.48607 x 0.00842)+ (1.22155 x —0.03653 )+ (— 0.95731 x 0.03178)
+(0.02255x 0.81556 )+ (- 0.56017 x 0.75435 )+ (1.27072 x 0.69936)
=0.405

Please Sir, can | have some more ... questionnaires?

What makes a good questionnaire?

As a rule of thumb, never to attempt to design a questionnaire! A questionnaire is very
easy to design, but a good questionnaire is virtually impossible to design. The point is
that it takes a long time to construct a questionnaire, with no guarantees that the
end result will be of any use to anyone. A good questionnaire must have three things:
discrimination, reliability and validity.

Discrimination

Discrimination is really an issue of item selection. Discrimination simply means that people with
different scores on a questionnaire should differ in the construct of interest to you. For example, a
qguestionnaire measuring social phobia should discriminate between people with social phobia and
people without it (i.e. people in the different groups should score differently). There are three
corollaries to consider:

1. People with the same score should be equal to each other along the measured construct.

2. People with different scores should be different from each other along the measured

construct.
3. The degree of difference between people is proportional to the difference in scores.

This is all pretty self-evident really, so what’s the fuss about? Well, let’s take a really simple example
of a three-item questionnaire measuring sociability. Imagine we administered this questionnaire to
two people: Jane and Katie. Their responses are shown in Figure 1.

Jane Katie
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1. |like going to parties 1. |like going to parties

2. | often go to the pub 2. | often go to the pub

K O RJ|s
O X 0|2
0 R R|F
= 0O 0|2

3 Ireally enjoy meeting people 3. Ireally enjoy meeting people

Figure 1

Jane responded yes to items 1 and 3 but no to item 2. If we score a yes with the value 1 and a no
with a 0, then we can calculate a total score of 2. Katie on the other hand answers yes to items 1 and
2 but no to item 3. Using the same scoring system her score is also 2. Therefore, numerically you have
identical answers (i.e. both Jane and Katie score 2 on this questionnaire); therefore, these two people
should be comparable in their sociability — are they?

The answer is: not necessarily. It seems that Katie likes to go to parties and the pub but doesn’t
enjoy meeting people in general, whereas Jane enjoys parties and meeting people but doesn’t enjoy
the pub. It seems that Katie likes social situations involving alcohol (e.g. the pub and parties), while
Jane likes socializing in general but can’t tolerate cigarette smoke. In many ways, therefore, these
people are very different because our questions are contaminated by other factors (i.e. attitudes to
alcohol or smoky environments). A good questionnaire should be designed such that people with
identical numerical scores are identical in the construct being measured — and that’s not as easy to
achieve as you might think!

A second related point is score differences. Imagine you take scores on the Spider Phobia
Questionnaire. Imagine you have three participants who do the questionnaire and get the following
scores:

Andy: | 30
<— | Difference =15

Graham: | 15
< | Difference =5

Dan: | 10

Andy scores 30 on the SPQ (very arachnophobic), Graham scores 15 (moderately phobic) and Dan
scores 10 (not very phobic at all). Does this mean that Dan and Graham are more similar in their
spider phobia than Graham and Andy? In theory this should be the case because Graham’s score is
more similar to Dan’s (difference = 5) than it is to Andy’s (difference = 15). In addition, is it the case
that Andy is three times more phobic of spiders than Dan is? Is he twice as phobic as Graham? Again,
his scores suggest that he should be. The point is that you can’t guarantee in advance that differences
in score are going to be comparable, yet a questionnaire needs to be constructed such that the
difference in score is proportional to the difference between people.

Validity

Items on your questionnaire must measure something, and a good questionnaire measures what you
designed it to measure (this is called validity). Validity basically means ‘measuring what you think
you’re measuring’. So, an anxiety measure that actually measures assertiveness is not valid; however,
a materialism scale that does actually measure materialism is valid. Validity is a difficult thing to
assess and it can take several forms:

1. Content validity: ltems on a questionnaire must relate to the construct being measured. For
example, a questionnaire measuring intrusive thoughts is pretty useless if it contains items
relating to statistical ability. Content validity is really how representative your questions are
— the sampling adequacy of items. This is achieved when items are first selected: don’t
include items that are blatantly very similar to other items, and ensure that questions cover
the full range of the construct.

2. Criterion validity: This is basically whether the questionnaire is measuring what it claims to
measure. In an ideal world, you could assess this by relating scores on each item to real-
world observations (e.g. comparing scores on sociability items with the number of times a
person actually goes out to socialize). This is often impractical and so there are other
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techniques such as: (a) using the questionnaire in a variety of situations and seeing how
predictive it is; (b) seeing how well it correlates with other known measures of your
construct (i.e. sociable people might be expected to score highly on extroversion scales); and
(c) using statistical techniques such as the Item Validity Index (IV1).

3. Factorial validity: This validity basically refers to whether the factor structure of the
guestionnaire makes intuitive sense. As such, factorial validity is assessed through factor
analysis. When you have your final set of items you can conduct a factor analysis on the data
(see the book). Factor analysis takes your correlated questions and recodes them into
uncorrelated, underlying variables called factors (an example might be recoding the variables
height, chest size, shoulder width and weight into an underlying variable called ‘build’). As
another example, to assess success in a course we might measure attentiveness in seminars,
the amount of notes taken in seminars, and the number of questions asked during seminars
— all of these variables may relate to an underlying trait such as ‘motivation to succeed’.
Factor analysis produces a table of items and their correlation, or loading, with each factor. A
factor is composed of items that correlate highly with it. Factorial validity can be seen from
whether the items tied on to factors make intuitive sense or not. Basically, if your items
cluster into meaningful groups then you can infer factorial validity.

Validity is a necessary but not sufficient condition of a questionnaire.

Reliability

A questionnaire must be not only valid, but also reliable. Reliability is basically the ability of the
questionnaire to produce the same results under the same conditions. To be reliable the
qguestionnaire must first be valid. Clearly the easiest way to assess reliability is to test the same group
of people twice: if the questionnaire is reliable you’d expect each person’s scores to be the same at
both points in time. So, scores on the questionnaire should correlate perfectly (or very nearly!).
However, in reality, if we did test the same people twice then we’d expect some practice effects and
confounding effects (people might remember their responses from last time). Also this method is not
very useful for questionnaires purporting to measure something that we would expect to change
(such as depressed mood or anxiety). These problems can be overcome using the alternate form
method in which two comparable questionnaires are devised and compared. Needless to say, this is a
rather time-consuming way to ensure reliability, and fortunately there are statistical methods to
make life much easier.

The simplest statistical technique is the split-half method. This method randomly splits the
guestionnaire items into two groups. A score for each subject is then calculated based on each half of
the scale. If a scale is very reliable we’d expect a person’s score to be the same on one half of the
scale as on the other, and so the two halves should correlate perfectly. The correlation between the
two halves is the statistic computed in the split-half method, large correlations being a sign of
reliability. The problem with this method is that there are a number of ways in which a set of data
can be split into two and so the results might be a result of the way in which the data were split. To
overcome this problem, Cronbach suggested splitting the data in two in every conceivable way and
computing the correlation coefficient for each split. The average of these values is known as
Cronbach’s alpha, which is the most common measure of scale reliability. As a rough guide, a value of
.8 is seen as an acceptable value for Cronbach’s alpha; values substantially lower indicate an
unreliable scale (see the book for more detail).

How to design your questionnaire

Step 1: Choose a construct

First you need to decide on what you would like to measure. Once you have done this use PsychLit
and the Web of Knowledge to do a basic search for some information on this topic. | don’t expect you
to search through reams of material, but just get some basic background on the construct you’re
testing and how it might relate to psychologically important things. For example, if you looked at
empathy, this is seen as an important component of Carl Roger’s client-centred therapy; therefore,

11n fact the correlation coefficient is adjusted to account for the smaller sample on which scores from the scale
are based (remember that these scores are based on half of the items on the scale).
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having the personality trait of empathy might be useful if you were to become a Rogerian therapist. It
follows then that having a questionnaire to measure this trait might be useful for selection purposes
on Rogerian therapy training courses. So, basically you need to set some kind of context to why the
construct is important — this information will form the basis of your introduction.

Step 2: Decide on a response scale
A fundamental issue is how you want respondents to answer questions. You could choose to have:

e Yes/no or yes/no/don’t know scales: This forces people to give one answer or another even
though they might feel that they are neither a yes nor no. Also, imagine you were measuring
intrusive thoughts and you had an item ‘I think about killing children’. Chances are everyone
would give a no response to that statement (even if they did have those thoughts) because it
is a very undesirable thing to admit. Therefore, all this item is doing is subtracting a value
from everybody’s score — it tells you nothing meaningful, it is just noise in the data. This
scenario can also occur when you have a rating scale with a don’t know response (because
people just cannot make up their minds and opt for the neutral response). This is why it is
sometimes nice to have questionnaires with a neutral point to help you identify which things
people really have no feelings about. Without this midpoint you are simply making people go
one way or the other which is comparable to balancing a coin on its edge and seeing which
side up it lands when it falls. Basically, when forced 50% will choose one option while 50%
will choose the opposite — this is just noise in your data.

o Ljkert scale: This is the standard agree—disagree ordinal categories response. It comes in
many forms:

0 3-point: Agree=Neither Agree nor Disagree=Disagree
0 5-point: Agree=Midpoint=Neither Agree nor Disagree=Midpoint=>Disagree
0 7-Point: Agree=2 Midpoints=Neither Agree nor Disagree=2 Midpoints=Disagree

Questions should encourage respondents to use all points of the scale. Ideally, the statistical
distribution of responses to a single item should be normal with a mean that lies at the centre of the
scale (so on a 5-point Likert scale the mean on a given question should be 3). The range of scores
should also cover all possible responses.

Step 3: Generate your items

Once you've found a construct to measure and decided on the type of response scale you’'re going to
use, the next task is to generate items. | want you to restrict your questionnaire to around 30 items
(20 minimum). The best way to generate items is to ‘brainstorm’ a small sample of people. This
involves getting people to list as many facets of your construct as possible. For example, if you
devised a questionnaire on exam anxiety, you might ask a number of students (20 or so) from a
variety of courses (arts and science), years (first, second and final) and even institutions (friends at
other universities) to list (on a piece of paper) as many things about exams as possible that make
them anxious. It is good if you can include people within this sample that you think might be at the
extremes of your construct (e.g. select a few people who get very anxious about exams and some
who are very calm). This enables you to get items that span the entire spectrum of the construct that
you want to measure.

This will give you a pool of items to inspire questions. Rephrase your sample’s suggestions in a way
that fits the rating scale you’ve chosen and then eliminate any questions that are basically the same.
You should hopefully begin with a pool of say 5060 questions that you can reduce to about 30 by
eliminating obviously similar questions.

Things to consider:

1. Wording of questions: The way in which questions are phrased can bias the answers that
people give; For example, Gaskell, Wright, and O’Muircheartaigh (1993) report several
studies in which subtle changes in the wording of survey questions can radically affect
people’s responses. Gaskell et al.’s article is a very readable and useful summary of this work
and their conclusions might be useful to you when thinking about how to phrase your
guestions.

2. Response bias: This is the tendency of respondents to give the same answer to every
question. Try to reverse-phrase a few items to avoid response bias (and remember to score
these items in reverse when you enter the data into R).
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Step 4: Collect the data

Once you’ve written your questions, randomize their order and produce your questionnaire. This is
the questionnaire that you’re going test. Photocopy the questionnaire and administer it to as many
people as possible (one benefit of making these questionnaires short is that it minimizes the time
taken to complete them!). You should aim for 50—100 respondents, but the more you get, the better
your analysis (which is why | suggest working in slightly bigger groups to make data collection easier).

Step 5: Analysis
Enter the data into R by having each question represented by a column in R. Translate your response
scale into numbers (i.e. a 5-point Likert might be 1 = completely disagree, 2 = disagree, 3 = neither
agree nor disagree, 4 = agree, 5 = completely agree). Reverse-phrased items should be scored in
reverse too!

What we’re trying to do with this analysis is to first eliminate any items on the questionnaire that
aren’t useful. So, we're trying to reduce our 30 items further before we run our factor analysis. We
can do this by looking at descriptive statistics and also correlations between questions.

Descriptive statistics: The first thing to look at is the statistical distribution of item scores. This alone
will enable you to throw out many redundant items. Therefore, the first thing to do when piloting a
guestionnaire is look at descriptive statistics on the questionnaire items. This is easily done in R (see
the book chapter). We’re on the lookout for:

1. Range: Any item that has a limited range (all the points of the scale have not been used).

2. Skew: | mentioned above that ideally each question should elicit a normally distributed set of
responses across subjects (each items mean should be at the centre of the scale and there
should be no skew). To check for items that produce skewed data, look for the skewness and
its standard error in your R output. We have also discovered in this book that you can divide
the skewness by its standard error to form a z-score (see Chapter 5).

3. Standard deviation: Related to the range and skew of the distribution, items with high or low
standard deviations may cause problems, so be wary of high and low values for the SD.

These are your first steps. Basically if any of these rules are violated then your items become non-
comparable (in terms of the factor analysis) which makes the questionnaire pretty meaningless!

Correlations: All of your items should intercorrelate at a significant level if they are measuring aspects
of the same thing. If any items do not correlate at a 5% or 1% level of significance then exclude them.
You can get a table of intercorrelations in R. The book gives more detail on screening correlation
coefficients for items that correlate with few others or correlate too highly with other items
(multicollinearity and singularity).
Factor analysis: When you’ve eliminated any items that have distributional problems or do not
correlate with each other, then run your factor analysis on the remaining items and try to interpret
the resulting factor structure. The book chapter details the process of factor analysis. What you
should do is examine the factor structure and decide:
1. Which factors to retain.
2. Which items load on to those factors.
3.  What your factors represent.
4. If there are any items that don’t load highly on to any factors, they should be eliminated
from future versions of the questionnaire (for our purposes you need only state that they are
not useful items as you won’t have time to revise and retest your questionnaires!).

Step 6: Assess the questionnaire

Having looked at the factor structure, you need to check the reliability of your items and the
guestionnaire as a whole. You should run a reliability analysis on the questionnaire. This is explained
in Section 17.8 of the book. There are two things to look at: (1) the Item Reliability Index (IRI), which is
the correlation between the score on the item and the score on the test as a whole multiplied by the
standard deviation of that item (called the corrected item—total correlation in SPSS). SPSS will do this
corrected item—total correlation and we’d hope that these values would be significant for all items.
Although we don’t get significance values as such, we can look for correlations greater than about .3
(although the exact value depends on the sample size, this is a good cut-off for the size of sample
you’ll probably have). Any items having correlations less than .3 should be excluded from the
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questionnaire. (2) Cronbach’s alpha, as we’ve seen, should be .8 or more and the deletion of an item
should not affect this value too much (see the reliability analysis handout for more detail).

The end?

You should conclude by describing your factor structure and the reliability of the scale. Also say
whether there are items that you would drop in a future questionnaire. In an ideal world we’d then
generate new items to add to the retained items and start the whole process again!

Please Sir, can | have some more ... kmo?

To use the KMO test you first need to execute the following function written by G. Jay Kerns,
Youngstown State University (see http://tolstoy.newcastle.edu.au/R/e2/help/07/08/22816.html):

kmo = function( data ){
library(MASS)
X <- cor(as.matrix(data))
iX <- ginv(X)
S2 <- diag(diag((ix~-1)))
AIS <- S2%*%iIX%*%S2
IS <- X+AlS-2*S2
Dai <- sqrt(diag(diag(AlS)))
IR <- ginv(Dai)%*%I1S%*%ginv(Dai)
AIR <- ginv(Dai)%*%AlIS%*%ginv(Dai)
a <- apply((AIR - diag(diag(AIR)))"2, 2, sum)
AA <- sum(a)
b <- apply((X - diag(nrow(X)))”2, 2, sum)
BB <- sum(b)
MSA <- b/(b+a)
AIR <- AlIR-diag(nrow(AIR))+diag(MSA)
kmo <- BB/ (AA+BB)

if (kmo >= 0.00 && kmo < 0.50){test <- "The KMO test yields a degree of common
variance unacceptable for FA_"}

else if (kmo >= 0.50 && kmo < 0.60){test <- "The KMO test yields a degree of
common variance miserable."}

else if (kmo >= 0.60 && kmo < 0.70){test <- "The KMO test yields a degree of
common variance mediocre."}

else if (kmo >= 0.70 && kmo < 0.80){test <- "The KMO test yields a degree of
common variance middling." }

else if (kmo >= 0.80 && kmo < 0.90){test <- "The KMO test yields a degree of
common variance meritorious.” }

else { test <- "The KMO test yields a degree of common variance marvelous." }
ans <- list( overall = kmo,

report = test,

individual = MSA,

AIS = AIS,

AIR = AIR )

return(ans)
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Labcoat Leni’s real research

World wide addiction?

Problem
Nichols, L. A., & Nicki, R. (2004). Psychology of Addictive Behaviors, 18(4), 381-384

The Internet is now a houshold tool. In 2007 it was estimated that around 179
million people worldwide used the Internet (over 100 million of those were in the
USA and Canada). From the increasing populatrity (and usefulness) of the Internet
has emerged a new phenomenon: Internet addiction. This is now a serious and
Q recognized problem, but until very recently it was very difficult to research this
'. . topic because there was not a psychometrically sound measure of Internet
'%" addition. That is, until Laura Nichols and Richard Nicki developed the Internet
-~ Addiction Scale, 1AS (Nichols & Nicki, 2004). (Incidentally, while doing some
research on this topic | encountered an Internet addiction recovery website that | won’t name but
that offered a whole host of resources that would keep you online for ages, such as questionnaires,
an online support group, videos, articles, a recovery blog and podcasts. It struck me that that this was
a bit like having a recovery centre for heroin addiction where the addict arrives to be greeted by a
nice-looking counsellor who says ‘there’s a huge pile of heroin in the corner over there, just help
yourself’.)

Anyway, Nichols and Nicki developed a 36-item questionnaire to measure internet addiction. It
contained items such as ‘Il have stayed on the Internet longer than | intended to’ and ‘My grades/work
have suffered because of my Internet use’ which could be responded to on a 5-point scale (Never,
Rarely, Sometimes, Frequently, Always). They collected data from 207 people to validate this
measure.

The data from this study are in the file Nichols & Nicki (2004).dat. The authors dropped two items
because they had low means and variances, and dropped three others because of relatively low
correlations with other items. They performed a principal components analysis on the remaining 31
items. Labcoat Leni wants you to run some descriptive statistics to work out which two items were
dropped for having low means/variances, then inspect a correlation matrix to find the three items
that were dropped for having low correlations. Finally, he wants you to run a principal components
analysis on the data.

Solution

First, it is very important to remember to load in the data:

internetData<-read.delim(*'Nichols & Nicki (2004).dat", header = TRUE)

We can then calculate the correlation matrix, using the cor() function and executing:
internetMatrix<-cor(internetData)

Executing this command creates a matrix of correlation coefficients called internetMatrix. We can use
this matrix in the analysis (although we don’t have to). To make our eyes hurt a little less, let’s use the
round() function to display only 2 decimal places of the correlation matrix that we have just created:

round(internetMatrix, 2)

We can then use the resulting correlation matrix below to check the pattern of relationships. First,
scan the matrix for correlations greater than .3, then look for variables that only have a small number
of correlations greater than this value. Then scan the correlation coefficients themselves and look for

PROFESSOR ANDY P FIELD

10



any greater than .9. If any are found then you should be aware that a problem could arise because of
multicollinearity in the data.

iasl ias2 ias3 ilas4 ias5 ias6 las7 ias8 ias9 i1asl0 iasll iasl2

iasl 1.00 0.43 0.46 0.35 0.52 0.56 0.48 0.48 0.51 0.43 0.42 0.43
ias2 0.43 1.00 0.33 0.54 0.38 0.24 0.39 0.32 0.29 0.30 0.26 0.32
ias3 0.46 0.33 1.00 0.52 0.47 0.41 0.49 0.62 0.50 0.40 0.43 0.46
ias4 0.35 0.54 0.52 1.00 0.46 0.27 0.45 0.44 0.37 0.37 0.27 0.44
ias5 0.52 0.38 0.47 0.46 1.00 0.48 0.43 0.59 0.51 0.52 0.34 0.44
ias6 0.56 0.24 0.41 0.27 0.48 1.00 0.50 0.43 0.50 0.59 0.42 0.50
ias7 0.48 0.39 0.49 0.45 0.43 0.50 1.00 0.47 0.54 0.60 0.41 0.60
ias8 0.48 0.32 0.62 0.44 0.59 0.43 0.47 1.00 0.63 0.48 0.43 0.54
ias9 0.51 0.29 0.50 0.37 0.51 0.50 0.54 0.63 1.00 0.56 0.44 0.49
ias10 0.43 0.30 0.40 0.37 0.52 0.59 0.60 0.48 0.56 1.00 0.51 0.64
iasll 0.42 0.26 0.43 0.27 0.34 0.42 0.41 0.43 0.44 0.51 1.00 0.51
iasl2 0.43 0.32 0.46 0.44 0.44 0.50 0.60 0.54 0.49 0.64 0.51 1.00
iasl13 0.12 0.37 0.19 0.31 0.24 0.10 0.22 0.24 0.21 0.21 0.23 0.26
iasl4 0.49 0.38 0.40 0.36 0.40 0.44 0.37 0.42 0.45 0.49 0.42 0.43
iasl5 0.51 0.35 0.42 0.27 0.37 0.39 0.36 0.42 0.45 0.44 0.55 0.38
iasl6 0.52 0.30 0.40 0.31 0.36 0.39 0.27 0.42 0.34 0.25 0.40 0.27
iasl7 0.35 0.25 0.39 0.29 0.40 0.50 0.50 0.43 0.50 0.57 0.46 0.60
iasl8 0.47 0.28 0.36 0.34 0.47 0.39 0.55 0.46 0.54 0.58 0.46 0.50
iasl9 0.46 0.28 0.65 0.42 0.51 0.49 0.44 0.63 0.48 0.49 0.49 0.54
ias20 0.48 0.29 0.44 0.42 0.47 0.45 0.53 0.53 0.52 0.56 0.46 0.55
ias21 0.47 0.29 0.45 0.36 0.52 0.49 0.55 0.57 0.63 0.58 0.54 0.61
ias22 0.16 0.15 0.18 0.15 0.15 0.16 0.15 0.29 0.10 0.22 0.33 0.22
ias23 0.28 0.19 0.26 0.25 0.34 0.29 0.21 0.30 0.32 0.30 0.31 0.25
ias24 0.42 0.31 0.60 0.41 0.49 0.38 0.49 0.54 0.51 0.45 0.53 0.49
ias25 0.45 0.26 0.35 0.37 0.47 0.36 0.39 0.51 0.41 0.40 0.42 0.43
ias26 0.52 0.28 0.44 0.27 0.43 0.65 0.44 0.47 0.46 0.51 0.57 0.53
ias27 0.40 0.29 0.39 0.26 0.35 0.33 0.37 0.40 0.34 0.28 0.36 0.27
ias28 0.49 0.20 0.37 0.22 0.39 0.57 0.42 0.49 0.50 0.48 0.58 0.47
ias29 0.54 0.32 0.40 0.43 0.55 0.46 0.48 0.45 0.51 0.58 0.45 0.53
ias30 0.47 0.30 0.42 0.39 0.47 0.42 0.41 0.43 0.41 0.38 0.36 0.43
ias31 0.33 0.24 0.51 0.28 0.33 0.28 0.33 0.39 0.30 0.30 0.30 0.34
ias32 0.22 0.15 0.26 0.17 0.25 0.36 0.14 0.23 0.13 0.27 0.19 0.22
ias33 0.50 0.36 0.45 0.47 0.60 0.35 0.50 0.49 0.53 0.47 0.44 0.46
ias34 0.44 0.20 0.29 0.22 0.42 0.47 0.43 0.41 0.37 0.52 0.34 0.37
ias35 0.38 0.27 0.43 0.25 0.42 0.26 0.25 0.47 0.25 0.27 0.31 0.25
ias36 0.49 0.32 0.46 0.35 0.47 0.51 0.66 0.56 0.55 0.64 0.49 0.56

iasl3 iasl4 iasl5 iasl6 i1asl7 i1asl8 iasl9 ias20 ias21l ias22 ias23 ias24
iasl 0.12 0.49 0.51 0.52 0.35 0.47 0.46 0.48 0.47 0.16 0.28 0.42
ias2 0.37 0.38 0.35 0.30 0.25 0.28 0.28 0.29 0.29 0.15 0.19 0.31
ias3 0.19 0.40 0.42 0.40 0.39 0.36 0.65 0.44 0.45 0.18 0.26 ©0.60
ias4 0.31 0.36 0.27 0.31 0.29 0.34 0.42 0.42 0.36 0.15 0.25 0.41
ias5s 0.24 0.40 0.37 0.36 0.40 0.47 0.51 0.47 0.52 0.15 0.34 0.49
iasé6 0.10 0.44 0.39 0.39 0.50 0.39 0.49 0.45 0.49 0.16 0.29 0.38
ias7 0.22 0.37 0.36 0.27 0.50 0.55 0.44 0.53 0.55 0.15 0.21 0.49
iass8 0.24 0.42 0.42 0.42 0.43 0.46 0.63 0.53 0.57 0.29 0.30 0.54
ias9 0.21 0.45 0.45 0.34 0.50 0.54 0.48 0.52 0.63 0.10 0.32 0.51
iasl0 0.21 0.49 0.44 0.25 0.57 0.58 0.49 0.56 0.58 0.22 0.30 0.45
iasll 0.23 0.42 0.55 0.40 0.46 0.46 0.49 0.46 0.54 0.33 0.31 0.53
iasl2 0.26 0.43 0.38 0.27 0.60 0.50 0.54 0.55 0.61 0.22 0.25 0.49
ias13 1.00 0.19 0.11 0.10 ©0.12 0.16 0.16 0.19 0.27 0.31 0.20 0.33
iasl4 0.19 1.00 0.47 0.34 0.41 0.47 0.43 0.57 0.43 0.30 0.35 0.46
iasl5 0.11 0.47 1.00 0.41 0.37 0.52 0.51 0.52 0.43 0.20 0.44 0.40
iasl6é 0.10 0.34 0.41 1.00 0.25 0.34 0.43 0.38 0.26 0.27 0.26 0.32
iasl7 0.12 0.41 0.37 0.25 1.00 0.51 0.43 0.54 0.52 0.18 0.26 0.43
iasl8 0.16 0.47 0.52 0.34 0.51 1.00 0.45 0.64 0.55 0.15 0.42 0.45
iasl9 0.16 0.43 0.51 0.43 0.43 0.45 1.00 0.52 0.53 0.19 0.32 0.61
ias20 0.19 0.57 0.52 0.38 0.54 0.64 0.52 1.00 0.57 0.26 0.41 0.51
ias21 0.27 0.43 0.43 0.26 0.52 0.55 0.53 0.57 1.00 0.27 0.28 0.56
ias22 0.31 0.30 0.20 0.27 0.18 0.15 0.19 0.26 0.27 1.00 0.39 0.21
ias23 0.20 0.35 0.44 0.26 0.26 0.42 0.32 0.41 0.28 0.39 1.00 0.35
ias24 0.33 0.46 0.40 0.32 0.43 0.45 0.61 0.51 0.56 0.21 0.35 1.00
ias25 0.20 0.35 0.40 0.35 0.36 0.52 0.48 0.58 0.41 0.28 0.40 0.49
ias26 0.14 0.53 0.65 0.49 0.54 0.51 0.60 0.62 0.55 0.28 0.47 0.47
ias27 0.18 0.40 0.41 0.36 0.17 0.24 0.38 0.34 0.26 0.18 0.20 0.44
ias28 0.19 0.51 0.71 0.44 0.43 0.51 0.53 0.61 0.54 0.32 0.52 0.46
ias29 0.19 0.47 0.47 0.44 0.48 0.57 0.46 0.71 0.54 0.18 0.44 0.49
ias30 0.21 0.45 0.39 0.34 0.42 0.43 0.52 0.46 0.50 0.28 0.28 0.55
ias31 0.17 0.31 0.28 0.22 0.29 0.18 0.42 0.35 0.36 0.16 0.18 0.55
ias32 0.26 0.30 0.22 0.27 0.26 0.13 0.24 0.30 0.26 0.33 0.24 0.21
ias33 0.23 0.43 0.47 0.35 0.36 0.55 0.44 0.62 0.54 0.15 0.29 0.46
ias34 0.10 0.42 0.48 0.37 0.39 0.54 0.39 0.52 0.41 0.20 0.32 0.27
ias35 0.16 0.45 0.43 0.35 0.26 0.35 0.46 0.45 0.24 0.26 0.48 0.42
ias36 0.20 0.54 0.57 0.39 0.58 0.65 0.57 0.69 0.59 0.27 0.47 0.49

iasl 0.45 0.52 0.40 0.49 0.54 0.47 0.33 0.22 0.50 0.44 0.38 0.49
ias2 0 0 0 0 0. 0. 0 0 0. 0 0 0.
ias3 0.35 0.44 0.39 0.37 0.40 0.42 0.51 0.26 0.45 0.29 0.43 0.46
ias4 0 0 0 0 0 0 0 0 0 0 0 0
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ias5 0.47 0.43 0.35 0.39 0.55 0.47 0.33 0.25 0.60 0.42 0.42 0.47
iasé 0.36 0.65 0.33 0.57 0.46 0.42 0.28 0.36 0.35 0.47 0.26 0.51
ias7 0.39 0.44 0.37 0.42 0.48 0.41 0.33 0.14 0.50 0.43 0.25 0.66
ias8 0.51 0.47 0.40 0.49 0.45 0.43 0.39 0.23 0.49 0.41 0.47 0.56
ias9 0.41 0.46 0.34 0.50 0.51 0.41 0.30 0.13 0.53 0.37 0.25 0.55
iasl0 0.40 0.51 0.28 0.48 0.58 0.38 0.30 0.27 0.47 0.52 0.27 0.64
iasll 0.42 0.57 0.36 0.58 0.45 0.36 0.30 0.19 0.44 0.34 0.31 0.49
iasl2 0.43 0.53 0.27 0.47 0.53 0.43 0.34 0.22 0.46 0.37 0.25 0.56
ias1l3 0.20 0.14 0.18 0.19 0.19 0.21 0.17 0.26 0.23 0.10 0.16 0.20
iasl4 0.35 0.53 0.40 0.51 0.47 0.45 0.31 0.30 0.43 0.42 0.45 0.54
iasl5 0.40 0.65 0.41 0.71 0.47 0.39 0.28 0.22 0.47 0.48 0.43 0.57
iasl6 0.35 0.49 0.36 0.44 0.44 0.34 0.22 0.27 0.35 0.37 0.35 0.39
iasl7 0.36 0.54 0.17 0.43 0.48 0.42 0.29 0.26 0.36 0.39 0.26 0.58
iasl8 0.52 0.51 0.24 0.51 0.57 0.43 0.18 0.13 0.55 0.54 0.35 0.65
ias1l9 0.48 0.60 0.38 0.53 0.46 0.52 0.42 0.24 0.44 0.39 0.46 0.57
ias20 0.58 0.62 0.34 0.61 0.71 0.46 0.35 0.30 0.62 0.52 0.45 0.69
ias21 0.41 0.55 0.26 0.54 0.54 0.50 0.36 0.26 0.54 0.41 0.24 0.59
ias22 0.28 0.28 0.18 0.32 0.18 0.28 0.16 0.33 0.15 0.20 0.26 0.27
ias23 0.40 0.47 0.20 0.52 0.44 0.28 0.18 0.24 0.29 0.32 0.48 0.47
ias24 0.49 0.47 0.44 0.46 0.49 0.55 0.55 0.21 0.46 0.27 0.42 0.49
ias25 1.00 0.48 0.39 0.52 0.53 0.43 0.27 0.21 0.53 0.41 0.48 0.51
ias26 0.48 1.00 0.41 0.76 0.56 0.47 0.25 0.28 0.49 0.63 0.52 0.64
ias27 0.39 0.41 1.00 0.46 0.32 0.25 0.39 0.15 0.37 0.27 0.41 0.35
ias28 0.52 0.76 0.46 1.00 0.56 0.39 0.22 0.30 0.41 0.56 0.45 0.65
ias29 0.53 0.56 0.32 0.56 1.00 0.45 0.28 0.26 0.68 0.59 0.38 0.64
ias30 0.43 0.47 0.25 0.39 0.45 1.00 0.43 0.33 0.43 0.30 0.31 0.49
ias31 0.27 0.25 0.39 0.22 0.28 0.43 1.00 0.20 0.33 0.11 0.33 0.35
ias32 0.21 0.28 0.15 0.30 0.26 0.33 0.20 1.00 0.26 0.25 0.26 0.19
ias33 0.53 0.49 0.37 0.41 0.68 0.43 0.33 0.26 1.00 0.47 0.37 0.52
ias34 0.41 0.63 0.27 0.56 0.59 0.30 0.11 0.25 0.47 1.00 0.49 0.58
ias35 0.48 0.52 0.41 0.45 0.38 0.31 0.33 0.26 0.37 0.49 1.00 0.43
ias36 0.51 0.64 0.35 0.65 0.64 0.49 0.35 0.19 0.52 0.58 0.43 1.00

We know that the authors eliminated three items for having low correlations. If we scan the
correlation matrix, we can see that the lowest correlations are for items IAS-13 (‘I have felt a
persistent desire to cut down or control my use of the Internet’), I1AS-22 (‘l have neglected things
which are important and need doing’), and 1AS-32 (‘| find myself thinking/longing about when | will go
on the Internet again’). As such these variables will also be excluded from the factor analysis.

To see more clearly which items had the lowest overall correlations, we could look at which items
had the lowest average correlation. We can calculate the average correlation for each item using the
stat.desc() function in the pastecs package.

First install the ‘pastecs’ package, if you haven’t already installed it, by executing:

install .packages(*'pastecs"™)

and then load the package:

library(pastecs)

We can then get the mean correlation (along with some other descriptives) rounded to 2 decimal
places by executing:

round(stat.desc(internetMatrix),2)

iasl ias2 i1as3 i1as4 i1as5 i1as6 1as7 1as8 i1as9 iasl0 iasll iasl2
mean 0.45 0.32 0.43 0.36 0.44 0.43 0.44 0.47 0.45 0.46 0.43 0.45

iasl3 iasl4 iasl5 iasl6 iasl7 iasl8 iasl9 ias20 ias21l ias22 ias23 ias24
mean 0.22 0.43 0.44 0.36 0.41 0.45 0.47 0.50 0.47 0.25 0.34 0.46

ias25 ias26 ias27 ias28 ias29 i1as30 ias31 ias32 ias33 ias34 ias35 ias36
mean 0.43 0.50 0.34 0.48 0.48 0.42 0.32 0.26 0.46 0.40 0.38 0.51

Looking at the (edited) output above, we can see more clearly that items 13, 22 and 32 had the
lowest average correlations and should therefore be excluded from the factor analysis.
Next we want to have a look at the means and variance. To get the descriptives, we again can use

the stat.desc() function by executing:
internetDescriptives<-stat.desc(internetData)

We can then round the descriptive to 2 decimal places by executing:

round(internetDescriptives,?2)
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iasl ias2 ias3 ias4 ias5 iasé ias7 ias8 ias9 iasl0 iasll iasl2
mean 1.49 1.59 2.68 2.01 1.51 1.22 1.41 2.09 1.66 1.36 1.48 1.71
var 0.68 0.86 1.15 1.15 0.72 0.32 0.64 1.27 0.91 0.48 0.57 0.74

iasl3 iasl4 iasl5 iasl6é iasl7 iasl8 i1asl9 ias20 ias21 i1as22 ias23 ias24
mean 2.03 1.33 1.23 1.30 1.31 1.33 2.03 1.32 1.58 1.25 1.14 1.89
var 1.26 0.42 0.27 0.48 0.46 0.47 0.90 0.41 0.92 0.43 0.18 0.92

ias25 1as26 ias27 1as28 1as29 ias30 1as31 ias32 ias33 1as34 ias35 ias36
mean 1.39 1.25 1.91 1.24 1.23 1.51 2.27 1.54 1.35 1.11 1.50 1.27
var 0.48 0.32 0.97 0.32 0.32 0.64 1.07 0.80 0.56 0.12 0.71 0.34

The resulting (edited) output is above (NB: | have deleted everything except the means and variances
from the table as these are the only descriptives that we are interested in here) and shows us that the
items with the lowest values are IAS-23 (‘l see my friends less often because of the time that | spend
on the Internet’) and IAS-34 (‘When | use the Internet, | experience a buzz or a high’). Therefore,
these items will also be excluded from the factor analysis.

Before we do the principal components analysis, we need to remove ias13, ias22, ias32, ias23 and
ias34 from the internetData dataframe. To do this we need to use the remove.vars() function from
the gdata package. Therefore, we first need to install and load the gdata package by executing:

install .packages('gdata’™)
library(gdata)

We can then remove the variables by executing:

internetData.2<-remove.vars(internetData, c("iasl3", "ias22", "ias32", "ias23",
""1as34"))

Executing the above command will create a new dataframe called internetData.2 which does not
contain the variables ias13, ias22, ias 32, ias 23 and ias34. R helpfully tells you that it has done what
you asked it to do by printing in the output the following:

Removing variable 'iasl3'
Removing variable 'ias22'
Removing variable 'ias32'
Removing variable 'ias23'
Removing variable 'ias34'

We should now run Bartlett’s test and the KMO on the internetData.2 dataframe. We can run this
test either on the raw data or on the correlation matrix. To run it from the raw data simply input the
dataframe (in this case internetData.2) into the function:

cortest.bartlett(internetData.?2)

For factor analysis to work we need some relationships between variables and if the R-matrix were
an identity matrix then all correlation coefficients would be zero. Therefore, we want this test to be
significant (i.e., have a significance value less than .05). A significant test tells us that the R-matrix is
not an identity matrix; therefore, there are some relationships between the variables we hope to
include in the analysis. For these data, Bartlett’s test is highly significant, x2(465) =4238.98, p < .001,
and therefore factor analysis is appropriate.

R was not square, finding R from data

$chisqg
[1] 4238.976

Sp.value
[1] o
sdf

[1] 465

Next we’d also like the KMO. Once you have executed the code of the function itself (see the book
chapter), you can use it by simply entering the name of your dataframe into it and executing:

kmo(internetData.?2)
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The results of the KMO test are shown below. Kaiser (1974) recommends a bare minimum of .5, and
values between .5 and .7 are mediocre, values between .7 and .8 are good, values between .8 and .9
are great and values above .9 are superb (Hutcheson & Sofroniou, 1999). For these data the overall
value is .94, which falls into the range of being superb (or ‘marvellous’ as the report puts it), so we
should be confident that the sample size and the data are adequate for factor analysis.

Soverall
[1] 0.9421769

Sreport

[1] "The KMO test yields a degree of common variance marvelous."

$individual

iasl ias2 ias3 ias4 ias5 iasé6 ias7 ias8

0.9516499 0.8951047 0.9425295 0.9230381 0.9515424 0.9241382 0.9195672 0.9471428

ias9 iasl0 iasll iasl2 iasl4 iasl5 iaslé6 iasl7
0.9556244 0.9437068 0.9540661 0.9564852 0.9386538 0.9169296 0.9406837 0.9567060

iasl8 iasl9 ias20 ias21 ias24 ias25 ias26 ias27
0.9634669 0.9659927 0.9646791 0.9595863 0.9463071 0.9465699 0.9388335 0.9331421

ias28 ias29 ias30 ias31 ias33 ias35 ias36
0.9182153 0.9373334 0.9501855 0.8939196 0.9288033 0.9209140 0.9531873

Finally, we’d like the determinant of the correlation matrix. To find the determinant, we use the
det() function, into which we place the name of a correlation matrix. As we have not yet computed
this matrix for the internetData.2 dataframe, we can get the determinant by putting the cor() function
for the raw data into the det() function:

det(cor(internetbata.2))

[1] 3.556999e-10

This value is greater than the necessary value of 0.00001 and, as such, our determinant does not
seem problematic and we do not need to remove any more variables from the dataframe at this
stage.

Next we can do the principal components analysis. As | mentioned in the book chapter, when
conducting principal components analysis we begin by establishing the linear variates within the data
and then decide how many of these variates to retain (or ‘extract’). Therefore, our starting point is to
create a principal components model that has the same number of factors as there are variables in
the data: by doing this we are just reducing the data set down to its underlying factors. By extracting
as many factors as there are variables we can inspect their eigenvalues and make decisions about
which factors to extract.

To create this model from the raw data (NB: you can also create this model from the correlation
matrix — if you have created one — but both methods will give you identical results; see the book
chapter) we execute (remember that we now have 31 variables in the dataframe rather than 36):

pcl <- principal(internetbata.2, nfactors = 31, rotate = 'none')

This command creates a model called pcl, which extracts 31 factors — the same as the number of
variables. We have set the rotation method to “none”, which means that we won’t carry out factor
rotation because we don’t need to at this stage.

We can look at the results of the principal components analysis by executing its name:

pcl

The (edited) output below shows the results of the first principal components model. The first part of
the output is the unrotated loadings; currently these are not interesting, and so to save space | have
not included them in the output below.

PC1l PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PClO PCll PCl2 PC13 PCl4 PC15
SS loadings 14.43 1.65 1.56 1.21 1.01 0.87 0.81 0.77 0.74 0.66 0.62 0.59 0.54 0.53 0.47
Proportion Var 0.47 0.05 0.05 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Cumulative Var 0.47 0.52 0.57 0.61 0.64 0.67 0.69 0.72 0.74 0.77 0.79 0.80 0.82 0.84 0.85

PClé PC1l7 PCl8 PC19 PC20 PC21 PC22 PC23 PC24 PC25 PC26 PC27 PC28 PC29
SS loadings 0.45 0.42 0.41 0.38 0.35 0.32 0.31 0.29 0.27 0.24 0.23 0.22 0.19 0.17
Proportion Var 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Cumulative Var 0.87 0.88 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.97 0.98 0.99 0.99
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PC30 PC31

SS loadings 0.15 0.13
Proportion Var 0.00 0.00
Cumulative Var 1.00 1.00

The thing to look at is the eigenvalues. The eigenvalues associated with each factor represent the
variance explained by that particular linear component. R calls these SS loadings (sums of squared
loadings), because they are the sum of the squared loadings. (You can also find them in a variable
associated with the model called values, so in our case we could access this variable using
pclSvalues.)

R also displays the eigenvalues in terms of the proportion of variance explained. Factor 1 explains
14.43 units of variance out of a possible 31 (the number of factors), so as a proportion this is 14.43/31
= 0.47; this is the value that R reports. We can convert these proportions to percentages by
multiplying by 100; so, factor 1 explains 47% of the total variance. It should be clear that the first few
factors explain relatively large amounts of variance (especially factor 1) whereas subsequent factors
explain only small amounts of variance. Based on Kaiser’s criterion of retaining factors with
eigenvalues greater than 1, we would retain five factors.

Let’s rerun the analysis, specifying that we want to retain five factors. To do this, we use an
identical command to the previous model but we change nfactors = 31 to nfactors = 5 because we
now want only five factors. (We should also change the name of the resulting model so that we don’t
overwrite the previous one.)

pc2 <- principal(internetData.2, nfactors = 5, rotate = "none')

We can look at this model by executing its name:

pc2

The output below shows the second principal components model. Again, the output contains the
unrotated factor loadings, but only for the first five factors. Notice that these are unchanged from the
previous factor loading matrix. Also notice that the eigenvalues (SS loadings), proportions of variance
explained and cumulative proportion of variance explained are also unchanged (except now there are
only five of them, because we only have five components). However, the communalities (the h2
column) and uniquenesses (the u2 column) are changed. Remember that the communality is the
proportion of common variance within a variable. Principal component analysis works on the initial
assumption that all variance is common; therefore, before extraction the communalities are all 1. In
effect, all of the variance associated with a variable is assumed to be common variance. Once factors
have been extracted, we have a better idea of how much variance is, in reality, common. The
communalities in the output reflect this common variance. So, for example, we can say that 63% of
the variance associated with question 1 is common, or shared, variance. Another way to look at these
communalities is in terms of the proportion of variance explained by the underlying factors. Before
extraction, there were as many factors as there are variables, so all variance is explained by the
factors and communalities are all 1. However, after extraction some of the factors are discarded and
so some information is lost. The retained factors cannot explain all of the variance present in the
data, but they can explain some. The amount of variance in each variable that can be explained by the
retained factors is represented by the communalities after extraction.

Now that we have the communalities, we can go back to Kaiser’s criterion to see whether we still
think that five factors should have been extracted. Kaiser’s criterion is accurate when there are less
than 30 variables and the communalities after extraction are greater than .7, or when the sample size
exceeds 250 and the average communality is greater than .6. For these data the sample size is 207,
there are 31 variables and the mean communality is .64, so extracting five factors is probably not
warranted.

Principal Components Analysis
Call: principal(r = internetData.2, nfactors = 5, rotate = "none")

Standardized loadings based upon correlation matrix
PC1 PC2 PC3 PC4 PC5 h2 uz

iasl 0.70 0.10 0.12 0.19 0.28 0.63 0.37
ias2 0.48 0.33 -0.16 0.43 0.37 0.69 0.31
ias3 0.68 0.40 -0.11 -0.24 0.06 0.69 0.31
ias4 0.56 0.37 -0.36 0.31 0.09 0.68 0.32
ias5 0.69 0.18 -0.16 0.17 -0.08 0.57 0.43
ias6 0.67 -0.20 0.03 -0.15 0.38 0.66 0.34
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ias7 0.70 -0.09 -0.33 0.02 0.12 0.62 0.38
ias8 0.74 0.20 -0.07 -0.12 -0.09 0.61 0.39
ias9 0.72 -0.09 -0.18 -0.05 0.06 0.57 0.43
iasl10 0.73 -0.30 -0.24 -0.04 0.08 0.68 0.32
iasll 0.67 -0.14 0.14 -0.19 0.10 0.54 0.46
iasl2 0.72 -0.18 -0.30 -0.12 0.06 0.66 0.34
iasl4 0.67 0.00 0.14 0.09 0.10 0.48 0.52
iasl5 0.68 -0.09 0.39 0.04 0.10 0.64 0.36
iasl6 0.55 0.18 0.35 0.16 0.28 0.56 0.44
iasl7 0.65 -0.33 -0.22 -0.16 0.05 0.61 0.39
ias18 0.71 -0.29 -0.05 0.21 -0.20 0.68 0.32
ias19 0.75 0.17 0.05 -0.26 -0.03 0.66 0.34
ias20 0.79 -0.16 0.03 0.14 -0.26 0.73 0.27
ias21 0.74 -0.19 -0.24 -0.14 -0.03 0.66 0.34
ias24 0.72 0.25 -0.09 -0.29 -0.17 0.70 0.30
ias25 0.66 0.05 0.13 0.16 -0.40 0.64 0.36
ias26 0.77 -0.21 0.35 -0.06 0.11 0.78 0.22
ias27 0.53 0.33 0.32 -0.07 0.08 0.51 0.49
ias28 0.74 -0.26 0.43 -0.08 0.03 0.80 0.20
ias29 0.76 -0.14 -0.02 0.28 -0.16 0.69 0.31
ias30 0.64 0.13 -0.10 -0.08 -0.03 0.45 0.55
ias31 0.50 0.44 -0.12 -0.42 -0.08 0.64 0.36
ias33 0.71 0.07 -0.10 0.32 -0.24 0.68 0.32
ias35 0.56 0.28 0.42 0.03 -0.28 0.64 0.36
ias36 0.80 -0.23 0.01 0.01 -0.07 0.70 0.30

PCl PC2 PC3 PC4 PC5
SS loadings 14.43 1.65 1.56 1.21 1.01
Proportion Var 0.47 0.05 0.05 0.04 0.03
Cumulative Var 0.47 0.52 0.57 0.61 0.64

Test of the hypothesis that 5 factors are sufficient.

The degrees of freedom for the null model are 465 and the objective function was
21.76

The degrees of freedom for the model are 320 and the objective function was 3.53

The number of observations was 207 with Chi Square = 676.34 with prob < 1.2e-27

Fit based upon off diagonal values = 0.99

We should also consider the scree plot. As mentioned above, the eigenvalues are stored in a
variable called pc1Svalues, and we can draw a quick scree plot using the plot() function, by executing:

plot(pcl$values, type = "b")
This command simply plots the eigenvalues (y) against the factor number (x). By default, the plot()
function will plot points (type= “p”). We want to see a line so that we can look at the trend (we could

ask for this by specifying type="1"), but ideally we want to look at both a line and points on the same
graph, which is why we specify type="b".
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The resulting scree plot shows a clear one-factor solution. This is the solution that the authors
adopted. Because we are retaining only one factor we can ignore the rotated factor solution and just
look at the unrotated factor loading matrix. This shows that all items have a high loading on factor 1.

Interpreting the factor loading matrix is a little complex, and we can make it easier by using the
print.psych() function. This does two things: first, it removes loadings that are below a certain value
that we specify (by using the cut option); and second, it reorders the items to try to put them into
their factors, which we request using the sort option. Generally you should be very careful with the
cut-off value — if you think that a loading of .4 will be interesting, you should use a lower cut-off (say,
.3), because you don’t want to miss a loading that was .39. Execute this command:

print.psych(pc2, cut = 0.3, sort = TRUE)

Principal Components Analysis
Call: principal(r = internetData.2, nfactors = 5, rotate = "none")
Standardized loadings based upon correlation matrix

item PC1 PC2 PC3 PC4 PC5 h2 u2

ias36 31 0.80 0.70 0.30
ias20 19 0.79 0.73 0.27
ias26 23 0.77 0.35 0.78 0.22
ias29 26 0.76 0.69 0.31
iasl9 18 0.75 0.66 0.34
ias21 20 0.74 0.66 0.34
ias8 8 0.74 0.61 0.39
ias28 25 0.74 0.43 0.80 0.20
iasl0 10 0.73 0.68 0.32
ias9 9 0.72 0.57 0.43
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ias24 21 0.72 0.70 0.30
iasl2 12 0.72 0.66 0.34
ias18 17 0.71 0.68 0.32
ias33 29 0.71 0.32 0.68 0.32
iasl 1 0.70 0.63 0.37
ias7 7 0.70 -0.33 0.62 0.38
ias5 5 0.69 0.57 0.43
iasls 14 0.68 0.39 0.64 0.36
ias3 3 0.68 0.40 0.69 0.31
iasé 6 0.67 0.38 0.66 0.34
iasll 11 0.67 0.54 0.46
iasl4 13 0.67 0.48 0.52
ias25 22 0.66 -0.40 0.64 0.36
iasl7 16 0.65 -0.33 0.61 0.39
ias30 27 0.64 0.45 0.55
ias35 30 0.56 0.42 0.64 0.36
ias4 4 0.56 0.37 -0.36 0.31 0.68 0.32
iaslé6 15 0.55 0.35 0.56 0.44
ias27 24 0.53 0.33 0.32 0.51 0.49
ias31 28 0.50 0.44 -0.42 0.64 0.36
ias2 2 0.48 0.33 0.43 0.37 0.69 0.31
PCl PC2 PC3 PC4 PC5
SS loadings 14.43 1.65 1.56 1.21 1.01

Proportion Var 0.47 0.05 0.05 0.04 0.03
Cumulative Var 0.47 0.52 0.57 0.61 0.64

Test of the hypothesis that 5 factors are sufficient.

The degrees of freedom for the null model are 465 and the objective function was

21.76

The degrees of freedom for the model are 320 and the objective function was 3.53
The number of observations was 207 with Chi Square = 676.34 with prob < 1.2e-27
Fit based upon off diagonal values = 0.99

The authors reported their analysis as follows: ‘We conducted principal-components analyses on the
log transformed scores of the IAS (see above). On the basis of the scree test (Cattell, 1978) and the
percentage of variance accounted for by each factor, we judged a one-factor solution to be most
appropriate. This component accounted for a total of 47% of the variance. A value for loadings of .30
(Floyd & Widaman, 1995) was used as a cut-off for items that did not relate to a component.

‘All 31 items loaded on this component, which was interpreted to represent aspects of a general
factor relating to Internet addiction reflecting the negative consequences of excessive Internet use’

(p. 382)

Smart Alex’s solutions

Task 1

The University of Sussex is constantly seeking to employ the best people possible as lecturers
(no, really, it is). Anyway, they wanted to revise a questionnaire based on Bland’s theory of
research methods lecturers. This theory predicts that good research methods lecturers
should have four characteristics: (1) a profound love of statistics; (2) an enthusiasm for
experimental design; (3) a love of teaching; and (4) a complete absence of normal
interpersonal skills. These characteristics should be related (i.e. correlated). The ‘Teaching of
Statistics for Scientific Experiments’ (TOSSE) already existed, but the university revised this
questionnaire and it became the ‘Teaching of Statistics for Scientific Experiments — Revised’
(TOSSE-R). They gave this questionnaire to 239 research methods lecturers around the world
to see if it supported Bland’s theory. The questionnaire is in Figure 17.9 (reproduced below),
and the data are in TOSSE.R.dat. Conduct a factor analysis (with appropriate rotation) to see
the factor structure of the data.

SD = Strongly Disagree, D = Disagree, N = Neither, A = Agree, SA = Strongly Agree

SD D N SA
| once woke up in the middle of a vegetable patch hugging a turnip that I'd
1 ; S , O O | O O
mistakenly dug up thinking it was Roy’s largest root
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If I had a big gun I'd shoot all the students | have to teach

O O] O] 0O | O

3 | memorize probability values for the F-distribution O O O @) @)

4 I worship at the shrine of Pearson @) oO|lO0O |00

5 | still live with my mother and have little personal hygiene @) O O O @)
Teaching others makes me want to swallow a large bottle of bleach

6 because the pain of my burning oesophagus would be light relief in @) @) O @) @)
comparison
Helping others to understand sums of squares is a great feeling @) O O @) @)
I like control conditions @) oO|lO0 |0 ]| O
| calculate three ANOVAs in my head before getting out of bed ever

9 ! y geHing Y/ o lo|lo|o|oO
morning

10 | could spend all day explaining statistics to people @) oO|lO0 |00

11 | like it when people tell me I've helped them to understand factor rotation @) @) @) @) @)

12 People fall asleep as soon as | open my mouth to speak @) oO|lO0O |00

13 Designing experiments is fun @) oO|lO0 |00

14 Id rather think about appropriate dependent variables than go to the pub @) o]0 | O] O

15 | soil my pants with excitement at the mere mention of factor analysis @) O O @) @)
Thinking about whether to use repeated or independent measures thrills

6 | e P P o |lo|lo|lO|O
| enjoy sitting in the park contemplating whether to use participant

17 oy SIHIng pare. prating partictp o |lo|lo|lOo|O
observation in my next experiment
Standing in front of 300 people in no way makes me lose control of m

18 & Peop Y Y/ o lo|lo|oOo|O
bowels

19 I like to help students @) oO|lO0O |00

20 Passing on knowledge is the greatest gift you can bestow on an individual @) O O @) @)

21 Thinking about Bonferroni corrections gives me a tingly feeling in my groin @) @) @) @) @)
I quiver with excitement when thinking about designing my next

22 aun g gningmy O |o|Oo|0O|O
experiment
| often spend my spare time talking to the pigeons ... and even they die of

23 pend my sp glomepe Y O |O0|O0|O|O
boredom
| tried to build myself a time machine so that | could go back to the 1930s

24 and follow Fisher around on my hands and knees licking the floor on which @) @) @) @) @)
he’d just trodden

25 I love teaching @) oO|lO0 |00

26 I spend lots of time helping students @) oO|lO0 | O] O
| love teaching because students have to pretend to like me or they’ll get

27 & P Vit o oo | O |0
bad marks

28 My cat is my only friend @) oO|lO0 |00

It goes without saying that first you need to set your working directory to where the TOSSE.R.dat file

is saved and then load in the data by executing:

tossData<-read.delim("'TOSSE.R.dat", header = TRUE)

There are some data missing in our tossData dataframe. To create a new data set (I am going to call

the new dataset tossData.2) without missing data we can use the na.omit() function and execute:

tossData.2<-na.omit(tossData)

We can run Bartlett's test by executing:
cortest.bartlett(tossData.?2)
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For factor analysis to work we need some relationships between variables and if the R-matrix were an
identity matrix then all correlation coefficients would be zero. Therefore, we want this test to be
significant (i.e., have a significance value less than .05). A significant test tells us that the R-matrix is
not an identity matrix; therefore, there are some relationships between the variables we hope to
include in the analysis. For these data, Bartlett’s test is highly significant, X2(378) =2989.77, p < .001,
and therefore factor analysis is appropriate.

R was not square, finding R from data

Schisqg
[1] 2989.769

Sp.value
[1] ©
sdf

[1] 378

Next we’d also like the KMO. To do this we can use kmo(), written by G. Jay Kerns, which calculates
the KMO and a variety of other things. The function itself is easy to use, but because it is not part of a
package you will have to execute the function manually before you can use it (see Oliver Twisted).
Once you have executed the code of the function itself (you only need to do this once per session and
so if you have already executed this function you do not need to execute it again), you can use it by
simply entering the name of your dataframe into it and executing:

kmo(tossData.2)

Soverall
[1] 0.8940547

Sreport
[1] "The KMO test yields a degree of common variance meritorious."

The results of the KMO test are shown above. For these data the overall value is .89, which is great, so
we should be confident that the sample size and the data are adequate for factor analysis.

Finally, we’d like the determinant of the correlation matrix. To find the determinant, we use the
det() function, into which we place the name of a correlation matrix. We haven’t computed this
matrix for the current data yet (tossData). This is not a problem, though, because we can just get the
determinant by putting the cor() function for the raw data into the det() function:

det(cor(tossbata.2))
[1] 1.240294e-06

The determinant of the correlation matrix is .00000124, which is smaller than .00001 and, therefore,
indicates that multicollinearity could be a problem in these data (although, strictly speaking, because
we’re using principal components analysis we don’t need to worry).

Next we can do the principal components analysis. As | mentioned in the book chapter, when
conducting principal components analysis we begin by establishing the linear variates within the data
and then decide how many of these variates to retain (or ‘extract’). Therefore, our starting point is to
create a principal components model that has the same number of factors as there are variables in
the data: by doing this we are just reducing the dataset down to its underlying factors. By extracting
as many factors as there are variables we can inspect their eigenvalues and make decisions about
which factors to extract.

To create this model from the raw data (you can also create this model from the correlation matrix if
you have created one, but both methods will give you identical results; see the book chapter) we
execute:

pcl <- principal(tossbata.2, nfactors = 28, rotate = "none™)

This command creates a model called pcl, which extracts 28 factors — the same as the number of
variables. We have set the rotation method to “none”, which means that we won’t carry out factor
rotation because we don’t need to at this stage.

We can look at the results of the principal components analysis by executing its name:

pcl
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The (edited) output below shows the results of the first principal components model. The first part of
the output is the unrotated loadings; currently these are not interesting, and so to save space | have
not included them in the output below.

PCl PC2 PC3 PC4 PC5 PC6 PC7 PC8 PCO PCIlO
SS loadings 9.06 2.79 1.66 1.51 1.18 0.99 0.93 0.82 0.79 0.74
Proportion Var 0.32 0.10 0.06 0.05 0.04 0.04 0.03 0.03 0.03 0.03
Cumulative Var 0.32 0.42 0.48 0.54 0.58 0.61 0.65 0.68 0.70 0.73

PC11l PCl2 PC13 PCl4 PC1l5 PClé6 PC1l7 PCl18 PC1l9 PC20 PC21
SS loadings 0.71 0.65 0.62 0.57 0.54 0.52 0.49 0.45 0.42 0.38 0.34
Proportion Var 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01
Cumulative Var 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.89 0.91 0.92 0.94

PC22 PC23 PC24 PC25 PC26 PC27 PC28
SS loadings 0.33 0.31 0.29 0.26 0.25 0.21 0.16
Proportion Var 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Cumulative Var 0.95 0.96 0.97 0.98 0.99 0.99 1.00

Test of the hypothesis that 28 factors are sufficient.

The degrees of freedom for the null model are 378 and the objective function was
13.6

The degrees of freedom for the model are -28 and the objective function was 0
The number of observations was 231 with Chi Square = 0 with prob < NA

Fit based upon off diagonal values = 1

The thing to look at is the eigenvalues (SS loadings). The eigenvalues associated with each factor
represent the variance explained by that particular linear component. (You can also find them in a
variable associated with the model called values, so in our case we could access this variable using
pclSvalues).

R also displays the eigenvalues in terms of the proportion of variance explained. Factor 1 explains
9.06 units of variance out of a possible 28 (the number of factors) so as a proportion this is 9.06/28 =
0.32; this is the value that R reports. We can convert these proportions to percentages by multiplying
by 100; so, factor 1 explains 32% of the total variance). It should be clear that the first few factors
explain relatively large amounts of variance (especially factor 1) whereas subsequent factors explain
only small amounts of variance. Based on Kaiser’s criterion of retaining factors with eigenvalues
greater than 1, we would retain five factors. Is this warranted?

Let’s rerun the analysis, specifying that we want to retain five factors. To do this, we use an
identical command to the previous model but we change nfactors = 28 to nfactors = 5. (We should
also change the name of the resulting model so that we don’t overwrite the previous one.)

pc2 <- principal(tossData.2, nfactors = 5, rotate = 'none™)

We can look at this model by executing its name:

pc2

The output below shows the second principal components model. Again, the output contains the
unrotated factor loadings, but only for the first five factors. Notice that these are unchanged from the
previous factor loading matrix. Also notice that the eigenvalues (SS loadings), proportions of variance
explained and cumulative proportion of variance explained are also unchanged (except now there are
only five of them, because we only have five components). However, the communalities (the h2
column) and uniquenesses (the u2 column) are changed. Remember that the communality is the
proportion of common variance within a variable. Principal component analysis works on the initial
assumption that all variance is common; therefore, before extraction the communalities are all 1. In
effect, all of the variance associated with a variable is assumed to be common variance. Once factors
have been extracted, we have a better idea of how much variance is, in reality, common. The
communalities in the output reflect this common variance. So, for example, we can say that 65% of
the variance associated with question 1 is common, or shared, variance. Another way to look at these
communalities is in terms of the proportion of variance explained by the underlying factors. Before
extraction, there were as many factors as there are variables, so all variance is explained by the
factors and communalities are all 1. However, after extraction some of the factors are discarded and
so some information is lost. The retained factors cannot explain all of the variance present in the
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data, but they can explain some. The amount of variance in each variable that can be explained by the
retained factors is represented by the communalities after extraction.

Now that we have the communalities, we can go back to Kaiser’s criterion to see whether we still
think that five factors should have been extracted. Kaiser’s criterion is accurate when there are less
than 30 variables and the communalities after extraction are greater than .7, or when the sample size
exceeds 250 and the average communality is greater than .6. For these data the sample size is 239,
there are 28 variables, and the mean communality is .579, so extracting five factors is not really
warranted.

Principal Components Analysis
Call: principal(r = tossData.2, nfactors = 5, rotate = "none")
Standardized loadings based upon correlation matrix

PC1 PC2 PC3 PC4 PC5 h2 u2

gl 0.68 -0.34 -0.09 0.10 -0.21 0.65 0.35
g2 0.37 -0.54 -0.01 0.30 0.31 0.62 0.38
g3 0.58 0.26 -0.22 0.31 -0.19 0.59 0.41
g4 0.60 0.03 -0.15 0.45 -0.05 0.59 0.41
g5 0.45 -0.24 0.52 -0.05 -0.10 0.54 0.46
g6 0.29 -0.50 -0.11 0.26 0.45 0.62 0.38
qgq7 0.53 0.39 -0.15 0.16 0.05 0.49 0.51
g8 0.80 0.06 -0.15 -0.07 0.09 0.68 0.32
g9 0.72 -0.30 -0.11 0.11 -0.03 0.64 0.36
glo 0.50 -0.27 -0.04 -0.10 0.29 0.42 0.58
gll 0.68 0.26 0.12 -0.02 -0.05 0.54 0.46
gl2 0.13 0.07 0.52 -0.07 -0.01 0.30 0.70
gl3 0.67 -0.02 -0.21 -0.17 -0.06 0.53 0.47
gl4 0.61 -0.15 0.16 -0.52 0.14 0.71 0.29
gl5 0.56 -0.17 -0.11 -0.09 -0.39 0.51 0.49
gle 0.65 0.09 -0.03 -0.50 0.04 0.68 0.32
gql7 0.77 -0.13 -0.19 -0.24 0.08 0.71 0.29
gls8 0.42 -0.52 0.17 0.11 0.15 0.51 0.49
glg 0.19 0.62 -0.02 0.10 0.32 0.54 0.46
g20 0.46 0.38 0.05 0.19 0.29 0.48 0.52
g21 0.67 0.10 -0.25 -0.06 -0.19 0.57 0.43
g22 0.79 -0.20 -0.19 -0.25 0.00 0.77 0.23
g23 0.43 -0.25 0.52 0.24 -0.11 0.59 0.41
g24 0.61 0.16 -0.13 0.34 -0.33 0.65 0.35
g25 0.50 0.44 0.16 0.10 0.26 0.55 0.45
g26 0.53 0.50 0.14 -0.21 0.04 0.60 0.40
g27 0.58 0.38 0.33 0.13 0.09 0.62 0.38
g28 0.46 -0.02 0.52 0.08 -0.22 0.54 0.46

PCl1 PC2 PC3 PC4 PC5
SS loadings 9.06 2.79 1.66 1.51 1.18
Proportion Var 0.32 0.10 0.06 0.05 0.04
Cumulative Var 0.32 0.42 0.48 0.54 0.58

Test of the hypothesis that 5 factors are sufficient.

The degrees of freedom for the null model are 378 and the objective function was
13.6

The degrees of freedom for the model are 248 and the objective function was 2.49
The number of observations was 231 with Chi Square = 539.34 with prob < 1.le-23

Fit based upon off diagonal values = 0.97

Sample size: MacCallum et al. (1999) have demonstrated that when communalities after extraction
are above .5, a sample size between 100 and 200 can be adequate, and even when communalities are
below .5 a sample size of 500 should be sufficient. We have a sample size of 239 with some
communalities below .5, and so the sample size may not be adequate. However, the KMO measure of
sampling adequacy is .894, which is above Kaiser's (1974) recommendation of .5. This value is
‘meritorious’ according to Hutcheson and Sofroniou (1999). As such, the evidence suggests that the
sample size is adequate to yield distinct and reliable factors.

We should also consider the scree plot. As mentioned above, the eigenvalues are stored in a
variable called pc1Svalues, and we can draw a quick scree plot using the plot() function, by executing:

plot(pcl$values, type = "b")
This command simply plots the eigenvalues (y) against the factor number (x). By default, the plot()
function will plot points (type= “p”). We want to see a line so that we can look at the trend (we could

ask for this by specifying type="1"), but ideally we want to look at both a line and points on the same
graph, which is why we specify type="b".
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The scree plot shows clear inflexions at 3 and 5 factors and so using the scree plot you could justify
extracting 3 or 5 factors.
Rotation: You should perform an oblique rotation because the question says that the constructs we’re
measuring are related. To perform an oblique rotation, we could execute:

pc3 <- principal(tossData.2, nfactors = 5, rotate = "oblimin™)

We can look at the factor loadings from this model in a nice easy-to-digest format by executing:
print.psych(pc3, cut = 0.3, sort = TRUE)

Principal Components Analysis
Call: principal(r = tossData.2, nfactors = 5, rotate = "oblimin")
Standardized loadings based upon correlation matrix

item TC1 TC4 TC2 TC3 TC5 h2 uz

gle 16 0.83 0.68 0.32
qgl4 14 0.81 0.71 0.29
g22 22 0.74 0.77 0.23
ql7 17 0.71 0.71 0.29
ql3 13 0.58 0.53 0.47
g8 8 0.54 0.68 0.32
glo 10 0.43 0.41 0.42 0.58
g24 24 0.76 0.65 0.35
a3 3 0.68 0.59 0.41
g4 4 0.60 0.59 0.41
g21 21 0.46 0.48 0.57 0.43
ql 1 0.30 0.46 0.65 0.35
qls 15 0.39 0.46 0.51 0.49
g9 9 0.33 0.37 0.35 0.64 0.36
glo 19 0.73 0.54 0.46
g25 25 0.67 0.55 0.45
g20 20 0.64 0.48 0.52
q27 27 0.57 0.39 0.62 0.38
g26 26 0.39 0.48 0.60 0.40
q7 7 0.38 0.45 0.49 0.51
qll 11 0.30 0.33 0.54 0.46
g23 23 0.72 0.59 0.41
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g28 28 0.70 0.54 0.46
g5 5 0.68 0.54 0.46
glz 12 0.53 0.30 0.70
g6 6 0.81 0.62 0.38
g2 2 0.75 0.62 0.38
gls 18 0.31 0.52 0.51 0.49

TCl TC4 TC2 TC3 TC5
SS loadings 4.83 3.45 2.91 2.57 2.45
Proportion Var 0.17 0.12 0.10 0.09 0.09
Cumulative Var 0.17 0.30 0.40 0.49 0.58

With factor correlations of
TCl TC4 TC2 TC3 TC5

TCl1 1.00 0.38 0.23 0.34 0.23
TC4 0.38 1.00 0.26 0.22 0.22
TC2 0.23 0.26 1.00 0.13 -0.09
TC3 0.34 0.22 0.13 1.00 0.20
TC5 0.23 0.22 -0.09 0.20 1.00

Test of the hypothesis that 5 factors are sufficient.

The degrees of freedom for the null model are 378 and the objective function was
13.6

The degrees of freedom for the model are 248 and the objective function was 2.49
The number of observations was 231 with Chi Square = 539.34 with prob < 1.le-23

Fit based upon off diagonal values = 0.97

Looking at the pattern matrix above (and using loadings greater than .4 as recommended by
Stevens) we see the following pattern:
Factor 1:
e (Q16. Thinking about whether to use repeated or independent measures thrills me
e (Q14.1'd rather think about appropriate dependent variables than go to the pub
e (Q22.1quiver with excitement when thinking about designing my next experiment
e Q17. 1 enjoy sitting in the park contemplating whether to use participant observation in my
next experiment
e (Q 13. Designing experiments is fun
e Q8. !like control conditions
e (Q10. I could spend all day explaining statistics to people

e (Q19.1like to help students

e (Q25.1love teaching

e (Q20. Passing on knowledge is the greatest gift you can bestow on an individual

e (Q27.1love teaching because students have to pretend to like me or they’ll get bad marks
e (Q26.1spend lots of time helping students

e Q7. Helping others to understand sums of squares is a great feeling

Factor 3:
e (Q23.1often spend my spare time talking to the pigeons ... and even they die of boredom
Q 28. My cat is my only friend
Q 5. I still live with my mother and have little personal hygiene
Q 12. People fall asleep as soon as | open my mouth to speak

Factor 4:

e Q24.1tried to build myself a time machine so that | could go back to the 1930s and follow
Fisher around on my hands and knees licking the floor on which he’d just trodden

e Q3.1 memorize probability values for the F-distribution

e Q4.1 worship at the shrine of Pearson

e (Q21. Thinking about Bonferroni corrections gives me a tingly feeling in my groin

e Q1. 1once woke up in the middle of a vegetable patch hugging a turnip that I'd mistakenly
dug up thinking it was Roy’s largest root

e (Q15.Isoil my pants with excitement at the mere mention of factor analysis

Factor 5:
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e (6. Teaching others makes me want to swallow a large bottle of bleach because the pain of
my burning oesophagus would be light relief in comparison

e Q2.If I had abig gun I'd shoot all the students | have to teach

e (Q18. Standing in front of 300 people in no way makes me lose control of my bowels

No factor:
e Q9. Icalculate three ANOVAs in my head before getting out of bed every morning
e Q11.1like it when people tell me I've helped them to understand factor rotation

Factor 1 seems to relate to research methods, factor 2 to teaching, factor 3 to general social skills,
factor 4 to statistics and factor 5 to, well, er, teaching again. All in all, this isn’t particularly satisfying
and doesn’t really support the four-factor model. We saw earlier that the extraction of five factors
probably wasn’t justified. In fact the scree plot seems to indicate three. Let’s rerun the analysis but
asking R for three factors. Let’s see how this changes the pattern matrix. We can do this by executing:

pc4 <- principal(tossData.2, nfactors = 3, rotate = "oblimin™)
print.psych(pc4, cut = 0.3, sort = TRUE)

Principal Components Analysis
Call: principal(r = tossData.2, nfactors = 3, rotate = "oblimin")
Standardized loadings based upon correlation matrix

item TC1 TC2 TC3 h2 uz

gz22 22 0.84 0.70 0.30
ql?7 17 0.79 0.64 0.36
g9 9 0.76 0.63 0.37
g8 8 0.73 0.67 0.33
ql 1 0.72 0.59 0.41
ql3 13 0.70 0.50 0.50
gz21 21 0.69 0.52 0.48
qls 15 0.58 0.35 0.65
g4 4 0.58 0.38 0.62
a3 3 0.55 0.35 0.46 0.54
g24 24 0.53 0.42 0.58
glo 10 0.51 0.32 0.68
qgle 16 0.51 0.43 0.57
g2 2 0.48 -0.44 0.43 0.57
gé 6 0.48 -0.44 0.35 0.65
gl4 14 0.43 0.33 0.42 0.58
qls 19 0.65 0.42 0.58
g26 26 0.65 0.55 0.45
g25 25 0.59 0.47 0.53
q27 27 0.58 0.40 0.59 0.41
g20 20 0.49 0.36 0.64
q7 7 0.41 0.48 0.46 0.54
qll 11 0.38 0.44 0.54 0.46
a5 5 0.70 0.53 0.47
g23 23 0.70 0.52 0.48
g28 28 0.66 0.48 0.52
qglz 12 0.56 0.29 0.71
gls 18 0.38 -0.38 0.39 0.48 0.52

TCl TC2 TC3
SS loadings 7.38 3.44 2.69
Proportion Var 0.26 0.12 0.10
Cumulative Var 0.26 0.39 0.48

With factor correlations of
TCl1 TC2 TC3

TCl 1.00 0.22 0.41

TC2 0.22 1.00 0.05

TC3 0.41 0.05 1.00

Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the null model are 378 and the objective function was
13.6

The degrees of freedom for the model are 297 and the objective function was 3.3
The number of observations was 231 with Chi Square = 718.84 with prob < 5.8e-37

Fit based upon off diagonal values = 0.96

Looking at the pattern matrix (and using loadings greater than .4 as recommended by Stevens) we
see the following pattern:
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Factor 1:
[ ]
[ ]

Factor 3:

Q 22. | quiver with excitement when thinking about designing my next experiment

Q 8. | like control conditions

Q 17. | enjoy sitting in the park contemplating whether to use participant observation in my
next experiment

Q 21. Thinking about Bonferroni corrections gives me a tingly feeling in my groin

Q 13. Designing experiments is fun

Q9. I calculate three ANOVAs in my head before getting out of bed every morning

Q 3. I memorize probability values for the F-distribution

Q 1. | once woke up in the middle of a vegetable patch hugging a turnip that I'd mistakenly
dug up thinking it was Roy’s largest root

Q 24. | tried to build myself a time machine so that | could go back to the 1930s and follow
Fisher around on my hands and knees licking the floor on which he'd just trodden

Q 4. | worship at the shrine of Pearson

Q 16. Thinking about whether to use repeated or independent measures thrills me

Q 15. | soil my pants with excitement at the mere mention of factor analysis

Q 10. | could spend all day explaining statistics to people

Q 14. I'd rather think about appropriate dependent variables than go to the pub

Q 19. | like to help students

Q 7. Helping others to understand sums of squares is a great feeling

Q 11. I like it when people tell me I’'ve helped them to understand factor rotation

Q2. If I had a big gun I'd shoot all the students | have to teach (note negative weight)

Q 6. Teaching others makes me want to swallow a large bottle of bleach because the pain of
my burning oesophagus would be light relief in comparison (note negative weight)

Q 26. | spend lots of time helping students

Q 25. | love teaching

Q 20. Passing on knowledge is the greatest gift you can bestow on an individual

Q 27. | love teaching because students have to pretend to like me or they’ll get bad marks

Q5. I still live with my mother and have little personal hygiene

Q 23. | often spend my spare time talking to the pigeons ... and even they die of boredom
Q 28. My cat is my only friend

Q 12. People fall asleep as soon as | open my mouth to speak

Q 27. | love teaching because students have to pretend to like me or they’ll get bad marks
Q 18. Standing in front of 300 people in no way makes me lose control of my bowels

This analysis is a lot clearer-cut: factor 1 relates to a love of methods and statistics, factor 2 to a love

of teachi

ng, and factor 3 to an absence of normal social skills. This doesn’t support the original four-

factor model suggested because the data indicate that love of methods and statistics can’t be
separated (if you love one you love the other).

Task

2

Dr Sian Williams (University of Brighton) devised a questionnaire to measure organizational
ability. She predicted five factors to do with organizational ability: (1) preference for
organization; (2) goal achievement; (3) planning approach; (4) acceptance of delays; and (5)
preference for routine. These dimensions are theoretically independent. Williams's
questionnaire (Figure 17.10, and reproduced below) contains 28 items using a 7-point Likert
scale (1 = strongly disagree, 4 = neither, 7 = strongly agree). She gave it to 239 people. Run a
principal components analysis on the data in Williams.dat. G
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1 I like to have a plan to work to in everyday life

2 | feel frustrated when things don’t go to plan

3 | get most things done in a day that | want to

4 |stick to a plan once | have made it

5 | enjoy spontaneity and uncertainty

6 | feel frustrated if | can’t find something | need

7 | find it difficult to follow a plan through

8 I am an organized person

9 | like to know what | have to do in a day

10 Disorganized people annoy me

11 |leave things to the last minute

12 1 have many different plans relating to the same goal
13 1 like to have my documents filed and in order

14 |find it easy to work in a disorganized environment
15 I make ‘to do’ lists and achieve most of the things on it
16 My workspace is messy and disorganized

17 1like to be organized

18 Interruptions to my daily routine annoy me

19 |feel that | am wasting my time

20 |forget the plans | have made

21 | prioritize the things | have to do

22 | like to work in an organized environment

23 |feel relaxed when | don't have a routine

24 | set deadlines for myself and achieve them

25 | change rather aimlessly from one activity to another during the day
26 | have trouble organizing the things | have to do

27 | put tasks off to another day

28 | feel restricted by schedules and plans

First set your working directory to where the Williams.dat file is saved and then load in the data by
executing:

williamsData<-read.delim('Williams.dat", header = TRUE)

We have some missing data in our williamsData dataframe. To create a new data set (I am going to
call the new dataset williamsData.2) without missing data we can use the na.omit() function and
execute:

williamsData.2<-na.omit(williamsData)

We can run the Bartlett's test by executing:
cortest.bartlett(williamsData.2)
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For factor analysis to work we need some relationships between variables and if the R-matrix were an
identity matrix then all correlation coefficients would be zero. Therefore, we want this test to be
significant (i.e., have a significance value less than .05). A significant test tells us that the R-matrix is
not an identity matrix; therefore, there are some relationships between the variables we hope to
include in the analysis. For these data, Bartlett’s test is highly significant, x2(378) =2989.77, p < .001,
and therefore factor analysis is appropriate.

R was not square, finding R from data

Schisqg
[1] 2989.769

Sp.value
[11 o
sdf

[1] 378

Next we’d also like the KMO. Once you have executed the code of the function itself (you only need
to do this once per session and so if you have already executed this function you do not need to
execute it again), you can use it by simply entering the name of your dataframe into it and executing:

kmo(williamsData.?2)

Soverall
[1] 0.8940547

Sreport
[1] "The KMO test yields a degree of common variance meritorious."

The results of the KMO test are shown above. For these data the overall value is 0.89, which is great,
so we should be confident that the sample size and the data are adequate for factor analysis.

Finally, we’d like the determinant of the correlation matrix. To find the determinant, we use the
det() function, into which we place the name of a correlation matrix. We haven’t computed this
matrix for the current data yet (williamsData). This is not a problem, though, because we can just get
the determinant by putting the cor() function for the raw data into the det() function:

det(cor(williamsData.2))

[1] 1.240294e-06

The determinant of the correlation matrix is .00000124, which is smaller than .00001 and, therefore,
indicates that multicollinearity could be a problem in these data (although, strictly speaking, because
we’re using principal components analysis we don’t need to worry).

Next we can do the principal component analysis. We are predicting that there will be five factors
and that these factors will be unrelated to each other. Therefore, we will conduct principal
components analysis with varimax rotation, specifying that R extracts five factors. We can do this by
executing (I am using the raw data but you can also create this model from the correlation matrix if
you have created one, both methods will give you identical results; see the book chapter):

pcl <- principal(williamsData.2, nfactors = 5, rotate = "varimax')

This command creates a model called pc1, which extracts 5 factors — the same as the number of
variables. We have set the rotation method to “varimax”, which means that we will carry out varimax
factor rotation on these data.

We can look at the results of the principal components analysis by executing its name:

pcl

The output below shows the results of the first principal components model. The first part of the
output is the unrotated loadings; currently these are not interesting, and so to save space | have not
included them in the output below.

Principal Components Analysis
Call: principal(r = williamsData.2, nfactors = 5, rotate = "varimax")
Standardized loadings based upon correlation matrix
RC1 RC4 RC2 RC5 RC3 h2 u2
orgl 0.41 0.54 -0.09 0.35 0.23 0.65 0.35
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org2 0.09 0.14 -0.04 0.76 0.11 0.62 0.38
org3 0.15 0.67 0.35 0.03 0.00 0.59 0.41
org4 0.07 0.62 0.31 0.32 0.07 0.59 0.41
orgeé6 0.25 0.07 -0.01 0.18 0.67 0.54 0.46
org7 0.08 0.03 0.01 0.78 -0.05 0.62 0.38
org9 0.20 0.40 0.54 0.00 -0.04 0.49 0.51
orglo 0.59 0.38 0.36 0.23 0.08 0.68 0.32
orgll 0.43 0.47 0.05 0.45 0.17 0.64 0.36
orgl2 0.44 0.04 0.12 0.45 0.08 0.42 0.58
orgl3 0.39 0.34 0.43 -0.01 0.29 0.54 0.46
orgl4 0.03 -0.13 0.14 -0.07 0.51 0.30 0.70
orglée 0.59 0.37 0.16 0.13 0.02 0.53 0.47
orgl7 0.76 -0.09 0.11 0.15 0.29 0.71 0.29
orgl8 0.45 0.51 -0.13 0.02 0.19 0.51 0.49
orgld 0.78 0.08 0.24 -0.03 0.13 0.68 0.32
org20 0.71 0.29 0.17 0.28 0.05 0.71 0.29
org2l 0.22 0.10 -0.11 0.59 0.32 0.51 0.49
org22 -0.01 -0.01 0.71 -0.12 -0.12 0.54 0.46
org23 0.10 0.16 0.65 0.13 0.07 0.48 0.52
org24 0.51 0.52 0.19 0.02 0.01 0.57 0.43
org25 0.75 0.34 0.09 0.28 0.08 0.77 0.23
org26 0.02 0.22 0.03 0.29 0.67 0.59 0.41
org27 0.13 0.74 0.24 0.03 0.14 0.65 0.35
org28 0.17 0.12 0.69 0.04 0.18 0.55 0.45
org29 0.41 0.13 0.57 -0.23 0.20 0.60 0.40
org30 0.17 0.21 0.61 0.01 0.41 0.62 0.38
org3l 0.13 0.23 0.12 0.03 0.67 0.54 0.46

RCl1 RC4 RC2 RC5 RC3
SS loadings 4.57 3.45 3.24 2.63 2.32
Proportion Var 0.16 0.12 0.12 0.09 0.08
Cumulative Var 0.16 0.29 0.40 0.50 0.58

Test of the hypothesis that 5 factors are sufficient.

The degrees of freedom for the null model are 378 and the objective function was
13.6

The degrees of freedom for the model are 248 and the objective function was 2.49

The number of observations was 231 with Chi Square = 539.34 with prob < 1.1le-23

Fit based upon off diagonal values = 0.97

The thing to look at is the eigenvalues. The eigenvalues (SS loadings) associated with each factor
represent the variance explained by that particular linear component. (You can also find them in a
variable associated with the model called values, so in our case we could access this variable using
pclSvalues). Based on Kaiser’s criterion of retaining factors with eigenvalues greater than 1, we
would retain five factors. Is this warranted? Kaiser’s criterion is accurate when there are less than 30
variables and the communalities after extraction are greater than .7, or when the sample size exceeds
250 and the average communality is greater than .6. For these data the sample size is 239 and the
mean communality is .579, so extracting five factors is not really warranted.

We should also consider the scree plot. As mentioned above, the eigenvalues are stored in a
variable called pc1Svalues, and we can draw a quick scree plot using the plot() function, by executing:

plot(pcl$values, type = "b")
This command simply plots the eigenvalues (y), against the factor number (x). By default, the plot()
function will plot points (type= “p”). We want to see a line so that we can look at the trend (we could

ask for this by specifying type="1"), but ideally we want to look at both a line and points on the same
graph, which is why we specify type="b".
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The scree plot shows clear inflexions at three and five factors and so using the scree plot you could
justify extracting three or five factors.
We can look at the factor loadings from this model in a nice easy-to-digest format by executing:

print._psych(pcl, cut = 0.3, sort = TRUE)

Principal Components Analysis
Call: principal(r = williamsData.2, nfactors = 5, rotate = "varimax")
Standardized loadings based upon correlation matrix

item RC1 RC4 RC2 RC5 RC3 h2 u2

orgl9 16 0.78 0.68 0.32
orgl7 14 0.76 0.71 0.29
org25 22 0.75 0.34 0.77 0.23
org20 17 0.71 0.71 0.29
orglé 13 0.59 0.37 0.53 0.47
orglo 8 0.59 0.38 0.36 0.68 0.32
org27 24 0.74 0.65 0.35
org3 3 0.67 0.35 0.59 0.41
org4 4 0.62 0.31 0.32 0.59 0.41
orgl 1 0.41 0.54 0.35 0.65 0.35
org24 21 0.51 0.52 0.57 0.43
orgls 15 0.45 0.51 0.51 0.49
orgll 9 0.43 0.47 0.45 0.64 0.36
org22 19 0.71 0.54 0.46
org28 25 0.69 0.55 0.45
org23 20 0.65 0.48 0.52
org30 27 0.61 0.41 0.62 0.38
org29 26 0.41 0.57 0.60 0.40
org9 7 0.40 0.54 0.49 0.51
orgl3 11 0.39 0.34 0.43 0.54 0.46
org7 6 0.78 0.62 0.38
org2 2 0.76 0.62 0.38
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org2l 18 0.59 0.32 0.51 0.49
orgl2 10 0.44 0.45 0.42 0.58
org31l 28 0.67 0.54 0.46
org26 23 0.67 0.59 0.41
org6 5 0.67 0.54 0.46
orgl4 12 0.51 0.30 0.70

RC1 RC4 RC2 RC5 RC3
SS loadings 4.57 3.45 3.24 2.63 2.32
Proportion Var 0.16 0.12 0.12 0.09 0.08
Cumulative Var 0.16 0.29 0.40 0.50 0.58

Test of the hypothesis that 5 factors are sufficient.

The degrees of freedom for the null model are 378 and the objective function was
13.6

The degrees of freedom for the model are 248 and the objective function was 2.49
The number of observations was 231 with Chi Square = 539.34 with prob < 1.le-23

Fit based upon off diagonal values = 0.97

Looking at the rotated component matrix (and using loadings greater than .4 as recommended by
Stevens) we see the following pattern:

Factor 1 (RC1): preference for organization

orgl0: | am an organized person

orgl6: | like to have my documents filed and in order

orgl7: | find it easy to work in a disorganized environment

orgl9: My workspace is messy and disorganized

org20: | like to be organized

org25: | like to work in an organized environment

orgl2: Disorganised people annoy me

VVVYVVVYVYVYY

Factor 2 (RC2): goal achievement

org9: | find it difficult to follow a plan through

orgl3: | leave things to the last minute

org22: | feel that | am wasting my time

org23: | forget the plans | have made

org28: | change rather aimlessly from one activity to another during the day
org29: | have trouble organizing the things | have to do

org30: | put tasks off to another day

VVVVVYVYY

Factor 3 (RC3): preference for routine

» org6: | enjoy spontaneity and uncertainty

» orgl4: | have many different plans relating to the same goal
» org26: | feel relaxed when | don't have a routine

» org31: | feel restricted by schedules and plans

Note: It's odd that none of these have reverse loadings.

Factor 4 (RC4): plan approach

orgl: | like to have a plan to work to in everyday life

org3: | get most things done in a day that | want to

org4: | stick to a plan once | have made it

orgll: | like to know what | have to do in a day

orgl8: | make ‘to do’ lists and achieve most of the things on it
org24: | prioritize the things | have to do

org27: | set deadlines for myself and achieve them

VVVVVYVYVYY

Factor 5 (RC5): acceptance of delays
» org2: | feel frustrated when things don’t go to plan
» org7: | feel frustrated if | can’t find something | need
» org21: Interruptions to my daily routine annoy me

Therefore, it seems as though there is some factorial validity to the structure.
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